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Abstract

People are becoming increasingly interested in mobile air quality sensor network appli-
cations. By eliminating the inaccuracies caused by spatial and temporal heterogeneity
of pollutant distributions, this method shows great potentials in atmosphere researches.
However, such system usually suffers from the problem of sensor noises and drift. For5

the sensing systems to operate stably and reliably in the real-world applications, those
problems must be addressed.

In this work, we exploit the correlation of different types of sensors caused by cross
sensitivity to help identify and correct the outlier readings. By employing a Bayesian
network based system, we are able to recover the erroneous readings and re-calibrate10

the drifted sensors simultaneously. Specifically, we have (1) designed a Bayesian
belief network based system to detect and recover the abnormal readings; (2) de-
veloped methods to update the sensor calibration functions in-field without require-
ment of ground truth; and (3) deployed a real-world mobile sensor network using the
custom-built M-Pods to verify our assumptions and technique. Compared with the ex-15

isting Bayesian belief network technique, the experiment results on the real-world data
demonstrate that our system can reduce error by 34.1 % and recover 4 times more
data on average.

1 Introduction

The traditional atmospheric researches, which rely upon stationary monitoring instru-20

ments, are constrained by the spatial and temporal heterogeneity of pollutant distribu-
tions. Therefore, mobile and distributed atmospheric air quality sensor networks are
becoming increasingly popular and mainstream (Jiang et al., 2011; Willett et al., 2010;
Piedrahita et al., 2014). Those sensor networks are carried by users and are capa-
ble of measuring the immediate surrounding atmosphere. The metal oxide sensors25

used in the sensing devices are typically miniature, low power, and inexpensive, in ex-
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change for accuracy, sensitivity, and reliability. For those mobile sensors, the measured
data usually contains significant noise from several sources. Subsequently, those noisy
readings can trigger false alarms, lead to incorrect scientific conclusions, and generate
sub-optimal solutions (Zhang et al., 2010; Chandola et al., 2009).

Sensor noises are mainly caused by random factors and sensor drift. The metal oxide5

sensors are very sensitive to environmental parameters, e.g., temperature and humid-
ity, which cannot be perfectly measured near the sensor surface. Moreover, there can
be many unexpected problems in the real-world deployment, such as electrical com-
ponents breakdown, power supplies surge and signal noise in the circuits (Elnahrawy
and Nath, 2003). Another significant source, observed and reported both by existing10

literature (Romain and Nicolas, 2010) and our own deployment, is sensor drift. Drift
is a phenomenon caused by many factors that change the property of the sensing
surface temporarily or permanently, including material degradation, exposure to sulfur
compounds or acids, aging, or condensate on the sensor surface (Haugen et al., 2000;
Arshak et al., 2004). Sensor drift changes the sensor function, shifting the measure-15

ment results from the ground truth without proper compensation. For example, in our
own deployment, we find that the sensor drift can increase the average sensor error by
orders of magnitude. Drifted sensors must be re-calibrated before they can be trusted
and used again.

The metal oxide sensors, utilizing either the oxidation or reduction reactions with pol-20

lutant gases, can respond to and quantify the air pollutants with reasonable sensitivity
and accuracy (Tans and Thoning, 2008). However, many pollutants share the same
reaction property. For example, both CO and NO2 can cause oxidation reactions with
the surface material. Thus, the sensors usually respond to a wide range of pollutants
other than the targeting gas. This property is called cross sensitivity (Zampolli et al.,25

2004). Because of cross sensitivity, the readings of different types of sensors are usu-
ally correlated. This property can be used to identify the compositions of pollutants in
the environment (Di Lecce and Calabrese, 2011).
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We leverage the correlations of different metal oxide sensors to help identify and
recover the abnormal readings. In many recent mobile sensing network designs, re-
searchers have built sensing devices equipped with multiple types of sensors to de-
tect various pollutants co-existing in the environment (Jiang et al., 2011; Willett et al.,
2010). For such applications, it is possible to exploit the correlation of readings and5

recover noisy readings using Bayesian belief networks (Janakiram et al., 2006). The
basic Bayesian network approach works well for the outliers caused by random noises,
but fails when sensors drift, which is common in real-world applications.

In this work, we aim to design a system that can efficiently detect and recover the
noisy readings, re-calibrate drifted sensors, and identify the gas compositions in the air10

simultaneously. This work makes the following contributions:

1. we have designed and implemented a Bayesian belief network based system to
detect and recover outliers; and

2. we incorporate and address the sensor function calibration problem within the
Bayesian network framework.15

By analyzing the collected data, we have observed significant drift within a short pe-
riod of time, e.g., a couple of months for most of the sensors. To validate our hypothesis
and techniques, we have performed a field deployment. The deployment lasts about 3
months. During the deployment, we have mainly monitored and analyzed the following
air quality related gases: NO2, CO, and O3. The deployment results have confirmed20

our models about the sensor drift and the effectiveness of our techniques.
The rest of this section is organized as follows. Section 3 discusses existing related

work. Section 4 provides an overview of the system. Section 5 describes the Bayesian
belief network approach and how to use it to detect and recover outliers. Section 6
discusses the limitations of existing Bayesian network approaches and presents our25

solution. Section 7 describes our real-world deployment and the evaluation results of
different techniques.
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2 Motivation example

This work is motivated by an atmosphere research project. Researchers have built sev-
eral mobile atmosphere monitoring devices and deployed them in the fields to monitor
the atmosphere around the users. The devices can measure multiple pollutant gases
using metal oxide sensors. Those sensors are pre-calibrated in the lab and are hence5

accurate before deployment. However, after a couple of months, it is discovered that the
sensitivities of the sensors have shifted significantly. The conclusion of the atmosphere
research is affected greatly because of the noise caused the sensor drift. Therefore,
it is beneficial and important to develop a technique that can utilize the relationship
between different types of sensors to reduce the sensor noise and re-calibrate the10

sensors during deployment.

3 Related work

The related work can be placed in three categories: co-located sensor calibration, sen-
sor abnormality detection, and Bayesian network based approaches.

3.1 Co-located sensor calibration15

Xiang et al. (2012, 2013) developed a model to estimate sensor drift and designed
a compensation technique to minimize the sensor drift assuming no access to ground
truth readings. Bychkovskiy et al. (2003) have proposed a two-phase post-deployment
sensor drift compensation technique in which co-located sensors are calibrated in pairs
using linear functions. Miluzzo et al. (2008) have proposed CaliBree, an auto-calibration20

algorithm for mobile sensor networks, in which mobile sensor nodes opportunistically
interact with accurate stationary sensors and hence enable calibration to reduce sensor
drift. Those techniques require that the co-located sensors are of the same type and
thus should have the same response from the physical environment. In contrast to the
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previous work, our technique can work on mobile sensing devices containing various
types of metal oxide sensors.

3.2 Sensor abnormality detection

Bettencourt et al. (2007) have presented an outlier detection technique to identify er-
rors during event detection in ecological wireless sensor networks. Their technique5

uses the spatio-temporal correlations of sensor data to detect outliers. Rajasegarar
et al. (2007) have proposed a support vector machine (SVM) based technique to detect
sensor outliers. Their approach uses a one-class quarter-sphere SVM to classify and
identify the local outliers. Unlike our technique, their method cannot estimate the actual
ground truth readings and recover outliers. Papadimitriou et al. (2003) have developed10

a technique that uses multi-granularity deviation factor to dynamically detect the out-
lier readings based on the correlations of local nodes. Their technique cannot address
the sensor drift problem though, when one or more sensors’ readings are shifted per-
sistently. Kumar et al. (2013) proposed a technique that performs a two-stage drift
correction. First, they use a Kriging-based approach to provide estimated ground truth15

readings. Then a Kalman-filter based technique is used to compensate for sensor drift.
However, Kriging requires certain spatial density in sensor nodes deployment. More-
over, a Kalman-filter based approach relies on the assumption of a state-space under-
lying model and knowledge of the model parameters, which is unrealistic in real-world
applications when the environment of the deployment field is often unknown and very20

dynamic.

3.3 Bayesian network based approaches

Elnahrawy and Nath (2003) have used a naive Bayesian network to identify local out-
liers and detect faulty sensors. This technique uses a trained Bayesian classifier for
probabilistic inference. Each node locally computes the probabilities of each of its in-25

coming readings and determines the readings as outliers if their probabilities are not
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the highest among all the possible outcomes. Their approach can only work for the
homogeneous sensors. Janakiram et al. (2006) have proposed a technique to detect
sensor outliers based on Bayesian belief network. They leverage the conditional cor-
relation of the readings from different types of sensors. However, their approach does
not take into consideration sensor drift and sensor function re-calibration, which are5

considered and addressed by our method.

4 System flow

Figure 1 shows the overview of our system. It describes the high-level composition of
the system. There are two major components, which are Bayesian network and sensor
re-calibration. In the real-world applications, the gathered atmosphere data, e.g., O3, is10

processed by the system. The system can reduce the sensing error caused by drift as
well as other atmospheric parameters, and re-calibrate the sensor function. The output
of the system is the O3 data with significantly improved accuracy and a more sensitive
sensor function.

The input of the system is the raw analog sensor readings in the form of voltage15

or resistance. Note that actual ground truth readings are not required and only used
for evaluation. The input sensor readings are first processed using a Bayesian belief
network, which is trained with normal data from the in-field deployment. The Bayesian
network can generate the estimated ground truth readings based on the readings from
all the correlated sensors. The estimated ground truth readings are then used to re-20

calibrate the sensors, i.e., generate the new sensor functions which can translate the
input analog readings into pollutant concentration in the unit of parts per million (ppm).
The new sensor functions are used to generate the sensor concentration readings,
which can derive the error distribution together with the estimated ground truth. The
error distribution can be used to update the virtual evidence of the Bayesian network.25

The virtual evidence is used by the Bayesian network to calculate the estimated ground
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truth, thus forming a loop. If the system is stabilized, the loop exits and the recovered
sensor readings are produced.

5 Basic Bayesian belief network

In this section, we first introduce the basic Bayesian belief network. Then we discuss
how to implement it in real-world applications.5

5.1 Bayesian network introduction

Bayesian networks are widely used to detect and recover abnormal data points for
sensor networks. The Bayesian network is built based on Bayes’ theorem and capable
of exploiting the inter-dependent or causal relationships of correlated sensors readings.
The types of the sensors involved can be different, which makes it appropriate for our10

application. A Bayesian network is a directed graph consisting of nodes and arcs (Kay,
1998).

Figure 2 shows an example Bayesian belief network for a simple sensor network.
In this application, there are three different types of sensors, which can measure tem-
perature (T ), carbon monoxide (CO), and nitrogen dioxide (NO2), respectively. Each15

sensors’ readings can be discretized into n values, with each discrete value denoted
as Tn, Cn, and Nn, respectively. Without loss of generality, we assume two distinct
discrete values for each sensor type. All the sensors are correlated. The readings of
metal oxide sensors are strongly affected by the temperature. Moreover, the readings
of the NO2 sensor and CO sensor are also correlated with each other because of cross20

sensitivity.
As shown in the figure, the Bayesian network describing this sensor network contains

three nodes, with each representing one type of sensor. There are two arcs connecting
the temperature sensor with the metal oxide sensors and one arc connecting the two
metal oxide sensors. To calculate the probability inference of each variable given the25
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input of other variables as evidence, each node is associated with a table, which is
called conditional probability table (CPT). CPT describes the conditional dependence
between any node with its parents. For the root node with no parents, CPT describes
the distribution of the variable itself. CPT can be derived by training the network using
historic data.5

5.2 Bayesian network for real-world applications

In this section, we discuss how to apply the Bayesian network technique to air quality
monitoring application using mobile sensing devices equipped with multiple types of
sensors. Without loss of generality, we assume that there are four types of equipped
sensors: temperature, NO2, CO, and ozone (O3). Their readings are all correlated.10

The Bayesian network graph for this application is shown in Fig. 3. In the graph, there
are two types of nodes. The first type, which contains T, CO(S), NO2(S), and O3(S),
represent the readings of the sensors. The second type, which contains CO(T), NO2(T),
and O3(T), represents the actual concentration (ground truth) of the corresponding
pollutants in the environment. In the rest of paper, if a pollutant is followed by S, we15

refer to the sensor reading of that pollutant. While if it is followed by T, we refer to its
ground truth concentration.

In the figure, there are arrows connecting the temperature sensor to all the three
types of metal oxide sensors since the readings of the temperature sensor influences
them all. The metal oxide sensors are assumed to be independent from each other,20

and the same is true for the ground truth concentration nodes. However, because of
cross sensitivity, each ground truth reading can have significant impact on the readings
of three metal oxide sensors simultaneously. Thus, there are three arcs connecting
the ground truth concentrations to all the three sensors. When the ground truth is not
available, the probability inference of the three ground truth nodes can be calculated25

using the input of the four actual sensors. The value with the highest probability is
considered as the estimated ground truth.
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6 Bayesian network with sensor re-calibration

In this section, we first talk about the problems of the basic Bayesian network for real-
world applications in which sensors may drift. Then we introduce virtual evidences to
address the drift problem and the sensor re-calibration technique to improve the per-
formance of the Bayesian network. Finally, we present the combined recursive system5

and describe the details and algorithm to implement it.

6.1 Problems for basic Bayesian network

Bayesian network can clean the corrupted data and detect abnormal readings by lever-
aging the inter-dependency of correlated sensors. For the random noises, it is quite
efficient and sufficient. However, in our applications, sensors frequently drift. It has10

been shown, both by existing literature (Xiang et al., 2012; Romain and Nicolas, 2010)
and by our own measurement data presented in Sect. 7.1.3, that sensor drift is a very
common and severe problem in real-world applications for those metal oxide sensors.
Significant drift can be accumulated within just a couple of months, making the sensors
effectively useless afterwards if not re-calibrated. Thus, the problem of sensor drift and15

the error caused by drift must be addressed.
The basic Bayesian belief network approach described in Sect. 5 cannot address

the drift problem. Drift can be considered a systematic deviation of the sensor readings
from the ground truth caused by the changing of the sensor function. When multiple
sensors drift, the basic Bayesian network approach can no longer identify the abnormal20

readings, let alone correct them and recover the ground truth. For example, consider
a Bayesian network containing three nodes, which represent CO, NO2, and O3, respec-
tively. Assume that the CO and NO2 sensors are drifted and constantly report extreme
values that can rarely be observed in the normal environment. In that case, even if the
ozone sensor is not drifted, the results of the Bayesian network can still be erroneous25

because the two drifted sensors out-weight the one undrifted sensor. Thus, the basic
Bayesian network cannot produce reasonable results due to the influence from multiple
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drifted sensors. Note that it is quite common to have more than one drifted sensors in
the system simultaneously, as shown by our deployment results in Sect. 7.1. Thus, the
system described in Fig. 3 is inadequate to address the real-world problems. To ap-
ply the Bayesian network in such circumstances, we need to (1) incorporate a ranking
mechanism that can quantify the sensor uncertainties into the Bayesian network and5

(2) design a drift compensation scheme to re-calibrate the sensor function and recover
the corrupted data simultaneously within the Bayesian network framework.

6.2 Error distribution and uncertain evidences

As the sensor drifts, its sensing sensitivity deteriorates and the uncertainty of its read-
ings increases. A Bayesian network treats all its input equally, which is problematic10

considering sensor drifts. For example, if a CO sensor is recently calibrated while an
O3 sensor has not been calibrated for a long time, we should clearly give the CO sen-
sor more confidences. In other words, within a Bayesian network framework, we must
have an evaluation mechanism which can rank and quantify the trustworthiness of each
particular sensor.15

To address this problem, we use error distributions to represent the sensitivity and
trustworthiness of the sensors. An example of error distributions is shown in Table 1. In
the example, we assume that the sensor has reported an environment concentration
of 1.5 ppm. The actual ground truth ranges from 0 to 3 ppm and is divided into three
discrete categories. We assume that in the environment the probability for the ground20

truth to be in any of these three categories is equal. As shown in Table 1, if the sensor
is accurate, then the probability that the actual ground truth is within the range of 1 to
2 ppm given a reported reading of 1.5 ppm is 100 %. If the sensor is drifted, the sensor
becomes less accurate and the possible value of the ground truth spreads wider. If
the sensor has a breakdown, it loses most of its sensitivity and the ground truth is no25

longer correlated to the sensor readings.
In that way, we have transformed the determined sensor readings into distribu-

tions, which inherently represent the trustworthiness of the sensors. Such input to
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the Bayesian network is called virtual evidence. Note that virtual evidence cannot be
applied to the Bayesian network directly. The Bayesian network must be modified to
incorporate such uncertain evidences.

6.3 Bayesian network with virtual evidence

For the basic Bayesian network, the inputs can only be determined values. To incor-5

porate the virtual evidences, some constraints, which is called Jeffrey’s rule (Jeffrey,
1990), must be honored. The concept of Jeffrey’s rule is described as follows.

Suppose the universe of all the events is denoted as U . We have a set of mutually
exclusive events γ1, . . .,γn, which is a subset of U , and P is the probability distribution
of those events. After applying the virtual evidence, the beliefs for events γ1, . . .,γn10

change and the updated distribution is denoted as P ′. P ′ should satisfy the following
equation.

P (α|γi ) = P ′(α|γi ), ∀i = 1, . . .,n. (1)

where α is any event in the universe. In other words, after the virtual evidence is ac-
cepted, the posterior probability of α can be changed, but the conditional probability for15

α ∈ U regarding to the events γ1, . . .,γn must remain the same.
To treat the virtual evidence as determined value while honoring the Jeffrey’s rule,

the Bayesian network should be modified by adding a virtue node to the drifted sensor
nodes (Chan and Darwiche, 2005). Figure 4 shows an example Bayesian network with
virtual nodes. In the figure, the pollutant followed by V represent a virtual node in the20

Bayesian network. The number in the table is the conditional probability. λ represents
the probability distribution of the input evidence. There are two sensor nodes, which are
temperature and CO. The temperature sensor is assumed to be accurate and with little
drift, while the CO sensor can drift. The CO sensor node is associated with a virtual
node, denoted as CO(V). The virtual node also has its own conditional probability table.25

The CPT of the virtual node should be calculated using the error distribution of the
actual sensor node so that the beliefs of the whole Bayesian network comply with
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Jeffrey’s rule. The detailed methods and equations to calculate its probability table can
be found in existing literature (Peng et al., 2010; Chan and Darwiche, 2005). Note that
the virtual node is only dependent on the corresponding sensor node and independent
of all the other nodes in the network.

Figure 5 shows the Bayesian network structure of our application after incorporating5

the virtual evidences. The definition of the symbols can be found in Sect. 5.2. Since
the temperature sensor and the hypothetical ground truth concentration sensors are
assumed to be accurate, they are not associated with any virtual nodes. Each metal
oxide sensor, which is prone to drift, is associated with a virtual node. The contents
in the CPT of the virtual nodes can be calculated using the error distributions of the10

actual nodes, which can be derived with the information of the (estimated) ground truth
readings and the sensor readings.

6.4 Sensor function re-calibration

The transformation function to translate the analog input signal into pollutant concen-
tration is called a sensor calibration function, or sensor function. The abnormal read-15

ings caused by environmental noises do not reflect a change of the sensor function.
However, when sensors are drifted, the sensor functions change, which can cause
a systematic increase of abnormal readings.

In this work, we apply a piece-wise linear function as the sensor function, which is
shown in the following equation.20

C = p1 +p2 · V +p3 · T , (2)

where C is the pollutant concentration, pi are the fitting parameters, V is the voltage,
and T is the temperature. The temperature information is reported by the on-board
sensors. The parameters in the equation are derived using linear regression with the
training data. Since accurate sensors providing ground truth readings are usually not25

available, we use the estimated ground truth concentration returned by the Bayesian
network instead. Note that as the sensitivity of the sensors reduces, the performance
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of this re-calibration scheme deteriorates. When a sensor breaks down and loses most
of its sensitivity, the sensor can no longer be re-calibrated.

6.5 System design

Figure 6 shows the flow of our system. The input sensor readings are first processed
using a Bayesian belief network, which is trained using normal data from the in-field5

deployment. The Bayesian network can generate the estimated ground truth values
based on the conditional probability tables and readings from all the correlated sen-
sors. The estimated ground truth readings are then used to re-calibrate the sensors,
i.e., generate the new sensor functions which can translate the input sensor analog
readings into actual pollutant concentrations. The new sensor functions are used to10

generate the sensor readings, which are used to derive the estimated error. The newly
updated estimated error is compared with the previous estimations. If the variation is
within a certain threshold, we consider the system stabilized and the current results
are the best estimation and final output. If the system is not stabilized yet, the virtual
evidence, which describes the error distributions of the input data, is updated using the15

new estimated concentration and subsequently used by the Bayesian network to gen-
erate the estimated ground truth readings for the next round of optimization. The loop
continues after a certain number of runs or until the system converges. The detailed
algorithm for the implementation is described in Algorithm 1.
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Algorithm 1 Algorithm for the Implementation of the System

Require: S // The input analog readings
Require: B // The trained Bayesian network
Require: O // The output set
Require: V // The initial distributions of the virtual evidences
Require: F // The initial sensor calibration function

N← size(S)
O← F (S)
E ← ∅, E is the estimated ground truth set
while O does not converge do

for i = 1 : N do
E (i )← B(V (i ),S(i ))

end for
F ← Linear_regression(E ,S)
O← F (S)
Update V using O and E

end while

7 Experimental results

In this section, we first describe a real-world co-location deployment of 9 mobile sensor
nodes and the analysis results for the deployment data. We then evaluate our system
using the real-world data.

7.1 Mobile sensor network deployment and analysis5

In this section, we discuss the details real-world deployment of a mobile sensor network
and the implications of the environmental study results.
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7.1.1 The mobile sensing device

To investigate the effect of sensor drift in real-world applications and collect data to eval-
uate our data cleaning technique, we deployed a sensor network in Denver, Colorado.
During the experiment, we deployed 9 M-Pods (Jiang et al., 2011), which are shown
in Fig. 7. The M-Pod is a custom-built mobile sensing device supporting embedded5

sensing, computation, and wireless communication. It supports detection of various air
pollutants, including NO2, CO, CO2, O3, and VOCs. It can also measure temperature,
humidity, and light. The latest revision of the M-Pod is compact (5cm×6.5 cm) and
energy efficient, with a battery life of greater than 16 h. The whole device, including
a Li-ion battery with a capacity of 6000 mAh, is enclosed by a low-cost off-the-shelf10

case that can be carried using an armband or attached to a backpack. A 3.3 V DC
fan is used to control airflow. A rectangular filter is installed around sensor to increase
sensing accuracy and prolong sensor life. Most of the power hungry on-board sensors
are power gated and can be controlled by commands from smartphones. Data are tem-
porally stored in a one megabyte non-volatile EEPROM. The total cost of the on-board15

components and sensors is less than USD 150 and can be reduced further if produced
in large quantity.

To receive, store, and present the data gathered by our M-Pod device, we have devel-
oped on-board firmware, smartphone applications, data servers, and web interfaces.
The firmware defines protocols of sensing, storing, and sending the environmental20

data. The smartphone application communicates with the M-Pod via its Bluetooth in-
terface. It can issue commands to and receive data from the M-pod. The data are
transmitted to the on-line data server and stored in the databases. A web-based user
interface allows users to access and analyze air quality data.

7.1.2 The real world deployment25

The 9 M-Pods were used continuously from March to May 2013. The sensors were not
changed throughout this period. For the majority of the time, the M-Pods were worn
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by users as part of an exposure assessment study. During three multi-day calibration
periods in March, April, and May, the M-Pods were placed at a reference air quality
monitoring site. The M-Pods were powered continuously on the roof of the monitoring
building, in a ventilated enclosure near the air inlets for the reference monitors. The
reference site, as shown in Fig. 7, monitors CO, NO2, and O3. It is located in down-5

town Denver, Colorado, and operated by the Colorado Department of Public Health
and Environment (CDPHE). The highly accurate and regularly maintained air pollutant
monitoring equipment in the station is used to provide the ground truth readings.

By co-locating the M-Pods with the reference monitors, we are able to derive both the
sensor analog readings and ground truth, which can be used to determine the sensor10

calibration functions. The forms of the sensor calibration functions vary depending on
sensor type. In this work, we use a piece-wise linear function. It is quite accurate ac-
cording to lab and field measurements, and requires much less resources to compute
compared with other more complicated forms of sensor functions. The calibrations are
performed using the field data. Thus, it does not require specialized equipment, and15

can cover a wider range of environmental parameter space than lab calibrations. Be-
fore the fitting of the sensor function, data filtering was performed to remove noise
from the sensor readings. Minute medians were first calculated from the 6 s raw data.
Then, we applied a filter based on difference in consecutive differences in the medians.
There were two thresholds for the filter, an absolute threshold that was deemed unre-20

alistic based on lab experiments, and 2 times the standard deviation of the differences.
By performing calibrations periodically with the same sets of sensors, we were able to
assess the change in baseline readings and sensitivity over time. The calibration func-
tions derived by fitting to the data of the first calibration period, which is considered as
the undrifted baseline, are applied to the entire data set.25

7.1.3 Data analysis

In this section, we present the analysis results of the collected data from the co-location
deployment. We examine and compare the readings of the CO, NO2, and O3 sensors.
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An example of the measured data and the corresponding ground truth readings is
presented in Fig. 8. The X axis in the figure shows the time line of the deployment
in the unit of days, while the Y axis shows the concentration of the pollutant in parts
per million. Two sets of data are presented. The red dots represent the ground truth
data measured by the accurate and regularly maintained equipment in the monitoring5

station, while the blue dots represent the data measured by the less accurate and drift-
prone metal oxide sensors housed by the M-Pods. The total duration of the deployment
is about two months. In the figure, there are three separate time periods, with each
lasting for about one week. During that time period, the M-Pods are located in the
station and calibrating. For the rest of the time, the M-Pods are carried by individual10

users and the ground truth readings of their exposed environments are unknown. Thus,
the readings from those time periods are not included.

The resultant data show that the drift rates for different types of sensors vary. For
the example in the figure, the NO2 sensor experiences large drift. After two months,
its error is increased more than 3 times. The CO sensor also suffers significant drift,15

though less compared to the NO2 sensor with about 50 % increase of error. But for
the O3 sensor, no significant drift is observed. The example shows that significant drift
can occur within just a couple of months, rendering the corresponding sensor almost
useless if not carefully re-calibrated. It demonstrated that drift is a real and severe
challenge for those cheap sensors to be useful in real-world applications. Moreover,20

since the exposed environment and the properties of the sensors vary, different sensors
usually exhibit different drift rates, making it impossible to re-calibrate the sensors using
a predetermined model.

Among the 9 M-Pods deployed, we choose 6 of them during our analysis and evalu-
ations. For the rest three, one of them did not return enough data due to transmission25

problem, and two of them have sensors completely dead within the two months deploy-
ment period. Table 2 shows the statistics of the sensing errors from the remaining 6 M-
Pods. The error in the table are defined as the absolute variation between the sensor
reading and the ground truth. We compare the drifted and undrifted data. The undrifted
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data are taken from the first time period as shown in Fig. 8. The drifted data are taken
from the third time period. The first three columns shows the average, maximum, and
standard deviation of the error distributions. Significant drift can be observed for all the
types of sensors. It should be noted that for some pollutants, such as NO2 and CO,
their mean values change more significantly than the standard deviation, which implies5

a close to linear shift. The last column of the table shows the correlation percentage.
Correlation percentage is defined as the percentage of the sensor pairs that shows
strong correlation among all the possible pairs of all the sensors. The result shows
a correlation percentage of over 93 %, indicating that Bayesian network might be an
appropriate solution.10

In conclusion, our deployment data show that sensor drift and consequently the noise
problem are very realistic and important for the metal oxide sensors. If not properly ad-
dressed, most of those sensors can be useless within just a couple of months. The
drift rates are dependent on the environment and sensor properties and hence, vary
for different sensors. Thus, it is not feasible to use predetermined correction methods:15

sensor calibration problem must be addressed using the field data. Moreover, differ-
ent types of sensors show strong correlations, permitting noise reduction and sensor
calibration.

7.2 Data recovery and sensor calibration results

In this section, we discuss the experimental environment setup and contrast our tech-20

nique with the alternatives.

7.2.1 Experiment setup

The outlier cleaning and sensor re-calibration functions are written using Matlab, with
the help of an external Bayesian network toolbox called bnt (Bayes Toolbox, 2007).
The program runs on a 4-core Intel Xeon E31230 machine with 8 GB memory. We25

use the data returned from 6 sensors out of a total of 9 sensors deployed, excluding
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the failed sensors and sensors with insufficient data. The failed sensors are not used
since their readings are no longer correlated with each other and re-calibration cannot
help improve the results. In other words, our technique does not have effect on them
and they should be simply replaced. The failed sensor can be detected using both our
technique and the Bayesian network method. The threshold to determine the outliers5

is equal to the standard deviation of the ground truth readings.
The CPT of the Bayesian network is derived from training. The training set is gen-

erated using the co-location data from undrifted (the first) time period. This approach
is more appropriate since it require much less effort to cover a reasonable number of
states than lab environment, and can provide us a more realistic prior distributions for10

temperature. The training dataset is filtered so that it contains only normal data. After
the Bayesian network is trained, the contents in the CPT remain unchanged until the
sensor is close to a reference station and have access to the ground truth readings
again. For the parameter states that are not encountered during the training phase, we
replace their contents with the encountered state of the closest distance, calculated15

using the Euclidean distance between those two states.
To evaluate our outlier recovery and sensor re-calibration technique, we compare the

following three approaches.

1. Uncompensated. This approach interprets the reported analog data using the pre-
determined sensor function from lab measurement and without any compensation20

scheme.

2. Bayesian network. This approach implements a Bayesian belief network based
technique proposed by Janakiram et al. (2006). It is the most relevant and closely
related work to the best of our knowledge.

3. Our technique. It improved upon the Bayesian network approach by incorporating25

the virtual evidence and sensor re-calibration.

We evaluate all the four approaches using the same set of testing data derived from
our real-world deployment.
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7.2.2 Drifted sensor recovery evaluation

Many existing outlier detection approaches, such as distance based techniques (Pa-
padimitriou et al., 2003; Subramaniam et al., 2006) or classification based techniques
(Rajasegarar et al., 2007), cannot estimate the ground truth data and provide re-
calibration opportunities for the drifted sensors. Thus, we do not include them in the5

comparison. Figure 9 shows the performance of various relevant data cleaning and
recovery techniques. Since our technique focuses on the sensor drift and re-calibration
problem, the experiment is performed on the third time period of the data set, which
represents the drifted sensors. The Y axis of the bar graph shows the average errors,
which are normalized to our recursive technique. The red numbers above the bar show10

the actual average error value for the uncompensated method. Compared with the un-
compensated approach, in which the sensor outliers are not compensated and sensor
calibration functions are not re-calibrated, our technique can incur only about 2.13 %
error on average. Moreover, compared with the Bayesian network approach, which is
the closest existing technique, our technique is capable of reducing errors by 32.0,15

34.7, and 35.5 % for CO, NO2, and O3, respectively. Overall, our technique can reduce
error by 34.1 % on average.

After the estimated ground truth values are derived, we consider it as the ground
truth concentration. However, since the ground truth concentration estimation is im-
perfect, the classification of sensor readings according to this estimate ground truth20

concentrations can be wrong. Hereby we define data recovery rate as the percentage
of corrected label data points after the data recovery scheme. Figure 10 shows the
comparison results of various techniques in terms of data recovery rate. The rate is
obtained by comparing the estimated readings against the ground truth. For our tech-
nique, the data recovery rates are 34.7, 33.3, 41.3 % for CO, NO2, and O3, respectively.25

Compared with the Bayesian network approach, our technique is about 4 times better.
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7.3 Outlier detection and cross sensitivity

In addition to the data recovery and sensor function re-calibration for the drifted data,
our technique is also capable of detecting outlier readings caused by random noise dur-
ing undrifted period. The testing dataset in this case consists of undrifted data points,
which are from the first time period. Since during normal operation, the outliers are5

quite scarce, we create the testing dataset by manually setting the ratio of normal and
abnormal data points. We first pick all the abnormal readings from the dataset, then
randomly choose the same number of random samples. Thus, in the testing set, the
ratio of abnormal readings is set to be 50 %. The detection rate is the combined correct
classification ratio by excluding the false positives and false negatives. We compare10

the outlier detection efficiency of our technique and the Bayesian network approach.
The results are shown in Fig. 11. The performance of our technique and the Bayesian
network is quite similar, both having a detection rate of about 87 %. This is as expected
since during normal operation, the sensors are not drifted and thus, sensor function
re-calibration should not have any significant impact on the results.15

In addition to the outlier detection and drift compensation, another advantage of our
technique, as well as the Bayesian network approach, is that it can automatically iden-
tify the pollutant composition in the air, thus addressing the cross sensitivity problem.
In the real-world deployment, the deployment environment is often complex and het-
erogeneous. Therefore, without the knowledge of the pollutant composition in the air,20

it is very hard to get an accurate estimation of the pollutant concentration using the
metal oxide sensors. Our technique can identify and quantify the pollutants in the air
as long as they are previously included in the training set. However, the total number
of pollutants in our system should be limited due to the constraint of storage space
requirement.25
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8 Conclusions

In this work, we have presented a Bayesian belief network based system to detect
and recover outliers in the presence of sensor drift. This work is to address the data
noise and sensor drift problems in the atmosphere research by exploring the correlation
of different types of sensors. In our analysis of real-world data, sensors usually incur5

significant drift within a few months. Thus, to ensure the accuracy of the atmosphere
researches utilizing those sensors, we develop a data treatment technique that can
significantly reduce the sensor noise and re-calibrate the drifted sensor online.

Our method improves upon the state-of-art Bayesian belief network techniques by
incorporating the virtual evidence and adjusting the sensor calibration functions re-10

cursively. We have also performed a real-world deployment of mobile sensor network
to investigate sensor drifts and validate our technique. Compared with the existing
Bayesian network technique, our method can improve the result significantly. As a re-
sult, our technique can reduce error by 34.1 % and increase the recovered data rate by
4 times on average.15
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Table 1. An Example Error Distribution with Reported Reading of 1.5 ppm.

Ground truth prob. (%)
0 ∼ 1 ppm 1 ∼ 2 ppm 2 ∼ 3 ppm

Accurate 0 100 0
Drifted 30 70 0

Breakdown 33 33 33
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Table 2. The Statistics of the Original and Drifted Sensor Readings.

Errors Undrifted (ppm) Drifted (ppm)
CO NO O3 CO NO O3

Average 0.31 16.13 0.04 10.72 112.45 0.20
Maximum 8.92 76.11 0.32 21.94 171.4 1.85

Standard deviation 0.52 11.19 0.07 0.93 12.50 0.28

Correlation 93%
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(a) (b)

Figure 7. (a) The Denver air quality monitoring station; (b) the M-Pod sensing platform.
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Figure 8. (a) Drift measurement of CO; (b) drift measurement of NO2; (c) drift measurement of
O3.

9005

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/8971/2015/amtd-8-8971-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/8971/2015/amtd-8-8971-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 8971–9008, 2015

Mobile sensor
network noise
reduction and

re-calibration using
Bayesian network

Y. Xiang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 9. The data recovery results of various techniques for the drifted data.
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Figure 10. The percentage of successfully cleaned data.
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Figure 11. The outlier detection results of various techniques for the undrifted data.
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